rProject
Author
Ivan Jacob Agaloos Pesigan
Published
June 17, 2025
Initial setup
Publish the project to Quarto Pub interactively by typing
Save the generated _publish.yml
. Once the _publish.yml
is generated, the succeeding builds will be handled by GitHub actions.
Wiki
This website contains resources related to the R (R Core Team, 2023) package rProject outside the pkgdown documentation.
Aalen, O. O., Røysland, K., Gran, J. M., Kouyos, R., & Lange, T. (2016). Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms. Statistical Methods in Medical Research, 25(5), 2294–2314. https://doi.org/10.1177/0962280213520436
Aalen, O. O., Røysland, K., Gran, J. M., & Ledergerber, B. (2012). Causality, mediation and time: A dynamic viewpoint. Journal of the Royal Statistical Society. Series A (Statistics in Society), 175(4), 831–861. https://doi.org/10.1111/j.1467-985X.2011.01030.x
Adolf, J. K., Loossens, T., Tuerlinckx, F., & Ceulemans, E. (2021). Optimal sampling rates for reliable continuous-time first-order autoregressive and vector autoregressive modeling. Psychological Methods, 26(6), 701–718. https://doi.org/10.1037/met0000398
Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review, 40(1), 37. https://doi.org/10.2307/2094445
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3), 817. https://doi.org/10.2307/2938229
Andrews, D. W. K. (2000). Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space. Econometrica, 68(2), 399–405. https://doi.org/10.1111/1468-0262.00114
Andrews, D. W. K., & Monahan, J. C. (1992). An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica, 60(4), 953. https://doi.org/10.2307/2951574
Antonakis, J., Bastardoz, N., & Rönkkö, M. (2019). On ignoring the random effects assumption in multilevel models: Review, critique, and recommendations. Organizational Research Methods, 24(2), 443–483. https://doi.org/10.1177/1094428119877457
Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(7), 947–947. https://doi.org/10.1037/amp0000389
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling. https://doi.org/10.4324/9781315827414
Arbuckle, J. L. (2020). Amos 27.0 user’s guide. IBM SPSS.
Arbuckle, J. L. (2021). Amos 28.0 user’s guide. IBM SPSS.
Arnett, J. J. (2005). The developmental context of substance use in emerging adulthood. Journal of Drug Issues, 35(2), 235–254. https://doi.org/10.1177/002204260503500202
Arnold, L. (1974). Stochastic differential equations: Theory and applications. Wiley.
Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. The Annals of Mathematical Statistics, 18(2), 265–271. https://doi.org/10.1214/aoms/1177730442
Ash, G. I., Gueorguieva, R., Barnett, N. P., Wang, W., Robledo, D. S., DeMartini, K. S., Pittman, B., Redeker, N. S., & Fucito, S. S. O. L. M. (2022). Sensitivity, specificity, and tolerability of the BACTrack Skyn compared to other alcohol monitoring approaches among young adults in a field‐based setting. Alcoholism: Clinical and Experimental Research, 46(5), 783–796. https://doi.org/10.1111/acer.14804
Asparouhov, T., Hamaker, E. L., & Muth’en, B. (2017). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388. https://doi.org/10.1080/10705511.2017.1406803
Asparouhov, T., & Muth’en, B. (2018). Latent variable centering of predictors and mediators in multilevel and time-series models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 119–142. https://doi.org/10.1080/10705511.2018.1511375
Asparouhov, T., & Muth’en, B. O. (2022). Multiple imputation with Mplus [Technical report]. http:
www.statmodel.com. http://www.statmodel.com/download/Imputations7.pdf
www.statmodel.com. http://www.statmodel.com/download/Imputations7.pdf
Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., & Monteiro, M. G. (2001). The Alcohol Use Disorders Identification Test: Guidelines for use in primary care (2nd ed.). Department of Mental Health; Substance Dependence, World Health Organization.
Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C. (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychological Review, 111(1), 33–51. https://doi.org/10.1037/0033-295x.111.1.33
Bakk, Z., & Kuha, J. (2020). Relating latent class membership to external variables: An overview. British Journal of Mathematical and Statistical Psychology, 74(2), 340–362. https://doi.org/10.1111/bmsp.12227
Baltes, P. B., & Nesselroade, J. R. (1979). History and rationale of longitudinal research. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development. Academic Press.
Barker, J. M., & Taylor, J. R. (2014). Habitual alcohol seeking: Modeling the transition from casual drinking to addiction. Neuroscience & Biobehavioral Reviews, 47, 281–294. https://doi.org/10.1016/j.neubiorev.2014.08.012
Barnard, G. A., Collins, J. R., Farewell, V. T., Field, C. A., Kalbfleisch, J. D., Nash, S. W., Parzen, E., Prentice, R. L., Reid, N., Sprott, D. A., Switzer, P., Warren, W. G., & Weldon, K. L. (1981). Nonparametric standard errors and confidence intervals: discussion. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 9(2), 158–170. https://doi.org/10.2307/3314609
Barnett, N. P. (2014). Alcohol sensors and their potential for improving clinical care. Addiction, 110(1), 1–3. https://doi.org/10.1111/add.12764
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40(3), 373–400. https://doi.org/10.1207/s15327906mbr4003_5
Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11(2), 142–163. https://doi.org/10.1037/1082-989x.11.2.142
Bell, A., & Jones, K. (2014). Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data. Political Science Research and Methods, 3(1), 133–153. https://doi.org/10.1017/psrm.2014.7
Bentler, P. M. (2007). Can scientifically useful hypotheses be tested with correlations? American Psychologist, 62(8), 772–782. https://doi.org/10.1037/0003-066x.62.8.772
Bentler, P. M., & Lee, S.-Y. (1983). Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models. Journal of Educational Statistics, 8(3), 207. https://doi.org/10.2307/1164760
Beran, R. (2003). The impact of the bootstrap on statistical algorithms and theory. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994972
Bergstrom, A. R. (1984). Continuous time stochastic models and issues of aggregation over time. In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2).
Bernardo, A. B. I., Wang, T. Y., Pesigan, I. J. A., & Yeung, S. S. (2017). Pathways from collectivist coping to life satisfaction among chinese: The roles of locus-of-hope. Personality and Individual Differences, 106, 253–256. https://doi.org/10.1016/j.paid.2016.10.059
Biesanz, J. C., Falk, C. F., & Savalei, V. (2010). Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45(4), 661–701. https://doi.org/10.1080/00273171.2010.498292
Blanca, M. J., Arnau, J., Lopez-Montiel, D., Bono, R., & Bendayan, R. (2013). Skewness and kurtosis in real data samples. Methodology, 9(2), 78–84. https://doi.org/10.1027/1614-2241/a000057
Boettiger, C., & Eddelbuettel, D. (2017). An introduction to Rocker: Docker containers for R. The R Journal, 9(2), 527. https://doi.org/10.32614/rj-2017-065
Boker, S. M. (2002). Consequences of continuity: The hunt for intrinsic properties within parameters of dynamics in psychological processes. Multivariate Behavioral Research, 37(3), 405–422. https://doi.org/10.1207/s15327906mbr3703_5
Bolger, N., Davis, A., & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54(1), 579–616. https://doi.org/10.1146/annurev.psych.54.101601.145030
Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. Guilford Publications.
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. https://doi.org/10.2307/271028
Bollen, K. A., & Brand, J. E. (2010). A general panel model with random and fixed effects: A structural equations approach. Social Forces, 89(1), 1–34. https://doi.org/10.1353/sof.2010.0072
Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology, 20, 115. https://doi.org/10.2307/271084
Bond, J. C., Greenfield, T. K., Patterson, D., & Kerr, W. C. (2014). Adjustments for drink size and ethanol content: New results from a self‐report diary and transdermal sensor validation study. Alcoholism: Clinical and Experimental Research, 38(12), 3060–3067. https://doi.org/10.1111/acer.12589
Boos, D. D. (2003). Introduction to the bootstrap world. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994971
Bou, J. C., & Satorra, A. (2017). Univariate versus multivariate modeling of panel data: Model specification and goodness-of-fit testing. Organizational Research Methods, 21(1), 150–196. https://doi.org/10.1177/1094428117715509
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144–152. https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060188
Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods. In Springer Series in Statistics. Springer New York. https://doi.org/10.1007/978-1-4419-0320-4
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62–83. https://doi.org/10.1111/j.2044-8317.1984.tb00789.x
Bühlmann, P. (2002). Bootstraps for time series. Statistical Science, 17(1). https://doi.org/10.1214/ss/1023798998
Casella, G. (2003). Introduction to the silver anniversary of the bootstrap. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994967
Casella, G., & Berger, R. L. (2002). Statistical inference. Thomson Learning.
Castro-Schilo, L., & Ferrer, E. (2013). Comparison of nomothetic versus idiographic-oriented methods for making predictions about distal outcomes from time series data. Multivariate Behavioral Research, 48(2), 175–207. https://doi.org/10.1080/00273171.2012.736042
Chen, G., Glen, D. R., Saad, Z. S., Hamilton, J. P., Thomason, M. E., Gotlib, I. H., & Cox, R. W. (2011). Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Computers in Biology and Medicine, 41(12), 1142–1155. https://doi.org/10.1016/j.compbiomed.2011.09.004
Cheong, J., MacKinnon, D. P., & Khoo, S. T. (2003). Investigation of mediational processes using parallel process latent growth curve modeling. Structural Equation Modeling: A Multidisciplinary Journal, 10(2), 238–262. https://doi.org/10.1207/s15328007sem1002_5
Chesher, A., & Jewitt, I. (1987). The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica, 55(5), 1217. https://doi.org/10.2307/1911269
Cheung, G. W., & Lau, R. S. (2007). Testing mediation and suppression effects of latent variables. Organizational Research Methods, 11(2), 296–325. https://doi.org/10.1177/1094428107300343
Cheung, M. W.-L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 227–246. https://doi.org/10.1080/10705510709336745
Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13(3), 182–202. https://doi.org/10.1037/a0013163
Cheung, M. W.-L. (2009a). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41(2), 425–438. https://doi.org/10.3758/brm.41.2.425
Cheung, M. W.-L. (2009b). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 16(2), 267–294. https://doi.org/10.1080/10705510902751291
Cheung, M. W.-L. (2013). Multivariate meta-analysis as structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 20(3), 429–454. https://doi.org/10.1080/10705511.2013.797827
Cheung, M. W.-L. (2015). Meta‐analysis: A structural equation modeling approach. Wiley. https://doi.org/10.1002/9781118957813
Cheung, M. W.-L. (2021). Synthesizing indirect effects in mediation models with meta-analytic methods. Alcohol and Alcoholism, 57(1), 5–15. https://doi.org/10.1093/alcalc/agab044
Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022). Improving an old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502–505. https://doi.org/10.1037/hea0001188
Cheung, S. F., & Pesigan, I. J. A. (2023a). FINDOUT: Using either SPSS commands or graphical user interface to identify influential cases in structural equation modeling in AMOS. Multivariate Behavioral Research, 58(5), 964–968. https://doi.org/10.1080/00273171.2022.2148089
Cheung, S. F., & Pesigan, I. J. A. (2023b). semlbci: An R package for forming likelihood-based confidence intervals for parameter estimates, correlations, indirect effects, and other derived parameters. Structural Equation Modeling: A Multidisciplinary Journal, 30(6), 985–999. https://doi.org/10.1080/10705511.2023.2183860
Cheung, S. F., Pesigan, I. J. A., & Vong, W. N. (2022). DIY bootstrapping: Getting the nonparametric bootstrap confidence interval in SPSS for any statistics or function of statistics (when this bootstrapping is appropriate). Behavior Research Methods, 55(2), 474–490. https://doi.org/10.3758/s13428-022-01808-5
Chow, S.-M., Hamagani, F., & Nesselroade, J. R. (2007). Age differences in dynamical emotion-cognition linkages. Psychology and Aging, 22(4), 765–780. https://doi.org/10.1037/0882-7974.22.4.765
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. https://doi.org/10.1080/10705511003661553
Chow, S.-M., Losardo, D., Park, J., & Molenaar, P. C. M. (2023). Continuous-time dynamic models: Connections to structural equation models and other discrete-time models. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd ed.). The Guilford Press.
Chow, S.-M., Witkiewitz, K., Grasman, R., & Maisto, S. A. (2015). The cusp catastrophe model as cross-sectional and longitudinal mixture structural equation models. Psychological Methods, 20(1), 142–164. https://doi.org/10.1037/a0038962
Clapp, J. D., Madden, D. R., Mooney, D. D., & Dahlquist, K. E. (2017). Examining the social ecology of a bar-crawl: An exploratory pilot study. PLOS ONE, 12(9), 1–27. https://doi.org/10.1371/journal.pone.0185238
Cloninger, C. R. (1987). Neurogenetic adaptive mechanisms in alcoholism. Science, 236(4800), 410–416. https://doi.org/10.1126/science.2882604
Cochran, W. G. (1952). The \(\chi^{2}\) test of goodness of fit. The Annals of Mathematical Statistics, 23(3), 315–345. https://doi.org/10.1214/aoms/1177729380
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
Cole, D. A., Martin, N. C., & Steiger, J. H. (2005). Empirical and conceptual problems with longitudinal trait-state models: Introducing a trait-state-occasion model. Psychological Methods, 10(1), 3–20. https://doi.org/10.1037/1082-989x.10.1.3
Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577. https://doi.org/10.1037/0021-843x.112.4.558
Collins, L. M., & Horn, J. L. (Eds.). (1991). Best methods for the analysis of change: Recent advances, unanswered questions, future directions. American Psychological Association. https://doi.org/10.1037/10099-000
Collins, L. M., & Sayer, A. (Eds.). (2002). New methods for the analysis of change: [Based on a conference held in 1998 at the pennsylvania state university, a follow-up to the los angeles conference best methods for the analysis of change] (2nd ed.). American Psychological Association.
Collins, L. M., & Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27(1), 131–157. https://doi.org/10.1207/s15327906mbr2701_8
Cooper, M. L., Frone, M. R., Russell, M., & Mudar, P. (1995). Drinking to regulate positive and negative emotions: A motivational model of alcohol use. Journal of Personality and Social Psychology, 69(5), 990–1005. https://doi.org/10.1037/0022-3514.69.5.990
Courtney, J. B., & Russell, M. A. (2021). Testing affect regulation models of drinking prior to and after drinking initiation using ecological momentary assessment. Psychology of Addictive Behaviors, 35(5), 597–608. https://doi.org/10.1037/adb0000763
Cox, W. M., & Klinger, E. (1988). A motivational model of alcohol use. Journal of Abnormal Psychology, 97(2), 168–180. https://doi.org/10.1037/0021-843x.97.2.168
Craig, C. C. (1936). On the frequency function of \(xy\). The Annals of Mathematical Statistics, 7(1), 1–15. https://doi.org/10.1214/aoms/1177732541
Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45(2), 215–233. https://doi.org/10.1016/s0167-9473(02)00366-3
Cribari-Neto, F., & da Silva, W. B. (2010). A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model. AStA Advances in Statistical Analysis, 95(2), 129–146. https://doi.org/10.1007/s10182-010-0141-2
Cribari-Neto, F., Souza, T. C., & Vasconcellos, K. L. P. (2007). Inference under heteroskedasticity and leveraged data. Communications in Statistics - Theory and Methods, 36(10), 1877–1888. https://doi.org/10.1080/03610920601126589
Cribari-Neto, F., Souza, T. C., & Vasconcellos, K. L. P. (2008). Errata: Inference under heteroskedasticity and leveraged data, Communications in Statistics, Theory and Methods, 36, 1877–1888, 2007. Communications in Statistics - Theory and Methods, 37(20), 3329–3330. https://doi.org/10.1080/03610920802109210
Crocetti, E., Hale, W. W., Dimitrova, R., Abubakar, A., Gao, C.-H., & Pesigan, I. J. A. (2014). Generalized anxiety symptoms and identity processes in cross-cultural samples of adolescents from the general population. Child & Youth Care Forum, 44(2), 159–174. https://doi.org/10.1007/s10566-014-9275-9
Cronbach, L. J., & Furby, L. (1970). How we should measure “change”: Or should we? Psychological Bulletin, 74(1), 68–80. https://doi.org/10.1037/h0029382
Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105(2), 317–327. https://doi.org/10.1037/0033-2909.105.2.317
Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person effects in longitudinal models of change. Annual Review of Psychology, 62(1), 583–619. https://doi.org/10.1146/annurev.psych.093008.100356
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82(5), 879–894. https://doi.org/10.1037/a0035297
Davidson, R., & MacKinnon, J. G. (1993). Estimation and inference in econometrics. Oxford University Press.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press. https://doi.org/10.1017/CBO9780511802843
Davison, A. C., Hinkley, D. V., & Young, G. A. (2003). Recent developments in bootstrap methodology. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994969
de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. L. (2017). Discrete- vs. Continuous-time modeling of unequally spaced experience sampling method data. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.01849
Deboeck, P. R., & Boulton, A. J. (2016). Integration of stochastic differential equations using structural equation modeling: A method to facilitate model fitting and pedagogy. Structural Equation Modeling: A Multidisciplinary Journal, 23(6), 888–903. https://doi.org/10.1080/10705511.2016.1218763
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61–75. https://doi.org/10.1080/10705511.2014.973960
Deboeck, P. R., Preacher, K. J., & Cole, D. A. (2018). Mediation modeling: Differing perspectives on time alter mediation inferences. In Continuous time modeling in the behavioral and related sciences (pp. 179–203). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_8
DeMartini, K. S., Gueorguieva, R., Taylor, J. R., Krishnan-Sarin, S., Pearlson, G., Krystal, J. H., & O’Malley, S. S. (2022). Dynamic structural equation modeling of the relationship between alcohol habit and drinking variability. Drug and Alcohol Dependence, 233, 109202. https://doi.org/10.1016/j.drugalcdep.2021.109202
Demeshko, M., Washio, T., Kawahara, Y., & Pepyolyshev, Y. (2015). A novel continuous and structural VAR modeling approach and its application to reactor noise analysis. ACM Transactions on Intelligent Systems and Technology, 7(2), 1–22. https://doi.org/10.1145/2710025
Didier, N. A., King, A. C., Polley, E. C., & Fridberg, D. J. (2023). Signal processing and machine learning with transdermal alcohol concentration to predict natural environment alcohol consumption. Experimental and Clinical Psychopharmacology, 32(2), 245–254. https://doi.org/10.1037/pha0000683
Doñamayor, N., Strelchuk, D., Baek, K., Banca, P., & Voon, V. (2017). The involuntary nature of binge drinking: Goal directedness and awareness of intention. Addiction Biology, 23(1), 515–526. https://doi.org/10.1111/adb.12505
Dora, J., Piccirillo, M., Foster, K. T., Arbeau, K., Armeli, S., Auriacombe, M., Bartholow, B., Beltz, A. M., Blumenstock, S. M., Bold, K., Bonar, E. E., Braitman, A., Carpenter, R. W., Creswell, K. G., De Hart, T., Dvorak, R. D., Emery, N., Enkema, M., Fairbairn, C. E., … King, K. M. (2023). The daily association between affect and alcohol use: A meta-analysis of individual participant data. Psychological Bulletin, 149(1–2), 1–24. https://doi.org/10.1037/bul0000387
Driver, C. C. (2025). Inference with cross-lagged effects—problems in time. Psychological Methods, 30(1), 174–202. https://doi.org/10.1037/met0000665
Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modeling with R package ctsem. Journal of Statistical Software, 77(5). https://doi.org/10.18637/jss.v077.i05
Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods, 23(4), 774–799. https://doi.org/10.1037/met0000168
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. https://doi.org/10.1007/s11336-017-9563-z
Dumenci, L., & Windle, M. (1996). A latent trait-state model of adolescent depression using the Center for Epidemiologic Studies-Depression Scale. Multivariate Behavioral Research, 31(3), 313–330. https://doi.org/10.1207/s15327906mbr3103_3
Duncan, O. D. (1969). Some linear models for two-wave, two-variable panel analysis. Psychological Bulletin, 72(3), 177–182. https://doi.org/10.1037/h0027876
Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. Springer New York. https://doi.org/10.1007/978-1-4614-6868-4
Eddelbuettel, D., & Balamuta, J. J. (2017). Extending R with C++: A brief introduction to Rcpp. PeerJ Preprints, 3188v1(3). https://doi.org/10.7287/peerj.preprints.3188v1
Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Ucar, I., Bates, D., & Chambers, J. (2023). Rcpp: Seamless R and C++ integration. https://CRAN.R-project.org/package=Rcpp
Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8). https://doi.org/10.18637/jss.v040.i08
Eddelbuettel, D., & Sanderson, C. (2014). RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics & Data Analysis, 71, 1054–1063. https://doi.org/10.1016/j.csda.2013.02.005
Efron, B. (1979a). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1). https://doi.org/10.1214/aos/1176344552
Efron, B. (1979b). Computers and the theory of statistics: Thinking the unthinkable. SIAM Review, 21(4), 460–480. https://doi.org/10.1137/1021092
Efron, B. (1981a). Nonparametric standard errors and confidence intervals. Canadian Journal of Statistics / La Revue Canadienne de Statistique, 9(2), 139–158. https://doi.org/10.2307/3314608
Efron, B. (1981b). Nonparametric standard errors and confidence intervals: rejoinder. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 9(2), 170–172. https://doi.org/10.2307/3314610
Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171–185. https://doi.org/10.1080/01621459.1987.10478410
Efron, B. (1988). Bootstrap confidence intervals: Good or bad? Psychological Bulletin, 104(2), 293–296. https://doi.org/10.1037/0033-2909.104.2.293
Efron, B. (2003). Second thoughts on the bootstrap. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994968
Efron, B. (2012). Bayesian inference and the parametric bootstrap. The Annals of Applied Statistics, 6(4). https://doi.org/10.1214/12-aoas571
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall. https://doi.org/10.1201/9780429246593
Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2). https://doi.org/10.1214/ss/1038425655
Enders, C. K. (2010). Applied missing data analysis. Guilford Publications.
Enders, C. K., Fairchild, A. J., & MacKinnon, D. P. (2013). A Bayesian approach for estimating mediation effects with missing data. Multivariate Behavioral Research, 48(3), 340–369. https://doi.org/10.1080/00273171.2013.784862
Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129–136. https://doi.org/10.1126/science.847460
Epskamp, S., Borsboom, D., & Fried, E. I. (2017). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4). https://doi.org/10.18637/jss.v048.i04
Epskamp, S., Waldorp, L. J., ottus, R. M., & Borsboom, D. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453–480. https://doi.org/10.1080/00273171.2018.1454823
Ernst, M. D., & Hutson, A. D. (2003). Utilizing a quantile function approach to obtain exact bootstrap solutions. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994978
Fairchild, A. J., & MacKinnon, D. P. (2014). Using mediation and moderation analyses to enhance prevention research. In Defining prevention science (pp. 537–555). Springer US. https://doi.org/10.1007/978-1-4899-7424-2_23
Fairchild, A. J., MacKinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). \(R^2\) effect-size measures for mediation analysis. Behavior Research Methods, 41(2), 486–498. https://doi.org/10.3758/brm.41.2.486
Fernandez, E. (2002). Anxiety, depression, and anger in pain: Research findings and clinical options. Advanced Psychological Resources.
Ferrer, E., & McArdle, J. (2003). Alternative structural models for multivariate longitudinal data analysis. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 493–524. https://doi.org/10.1207/s15328007sem1004_1
Finkel, S. E. (1995). Causal analysis with panel data. Sage.
Finlay, A. K., Ram, N., Maggs, J. L., & Caldwell, L. L. (2012). Leisure activities, the social weekend, and alcohol use: Evidence from a daily study of first-year college students. Journal of Studies on Alcohol and Drugs, 73(2), 250–259. https://doi.org/10.15288/jsad.2012.73.250
Flor, H., & Turk, D. C. (2011). Chronic pain: An integrated biobehavioral approach. IASP Press.
Fridberg, D. J., Wang, Y., & Porges, E. (2022). Examining features of transdermal alcohol biosensor readings: A promising approach with implications for research and intervention. Alcoholism: Clinical and Experimental Research, 46(4), 514–516. https://doi.org/10.1111/acer.14794
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233–239. https://doi.org/10.1111/j.1467-9280.2007.01882.x
Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47(1), 61–87. https://doi.org/10.1080/00273171.2012.640596
Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N., & Turk, D. C. (2007). The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychological Bulletin, 133(4), 581–624. https://doi.org/10.1037/0033-2909.133.4.581
Gates, K. M., Chow, S.-M., & Molenaar, P. C. M. (2023). Intensive longitudinal analysis of human processes. Chapman & Hall/CRC Press,. https://doi.org/10.1201/9780429172649
Gates, K. M., Molenaar, P. C. M., Hillary, F. G., Ram, N., & Rovine, M. J. (2010). Automatic search for fMRI connectivity mapping: An alternative to Granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage, 50(3), 1118–1125. https://doi.org/10.1016/j.neuroimage.2009.12.117
Georgeson, A. R., Alvarez-Bartolo, D., & MacKinnon, D. P. (2023). A sensitivity analysis for temporal bias in cross-sectional mediation. Psychological Methods. https://doi.org/10.1037/met0000628
Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal models. Child Development, 58(1), 80. https://doi.org/10.2307/1130293
Gollob, H. F., & Reichardt, C. S. (1991). Interpreting and estimating indirect effects assuming time lags really matter. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change: Recent advances, unanswered questions, future directions (pp. 243–259). American Psychological Association. https://doi.org/10.1037/10099-015
Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical Association, 55(292), 708–713. https://doi.org/10.1080/01621459.1960.10483369
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8(3), 206–213. https://doi.org/10.1007/s11121-007-0070-9
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791
Greenfield, T. K., Ye, Y., Bond, J., Kerr, W. C., Nayak, M. B., Kaskutas, L. A., Anton, R. F., Litten, R. Z., & Kranzler, H. R. (2014). Risks of alcohol use disorders related to drinking patterns in the U.S. General population. Journal of Studies on Alcohol and Drugs, 75(2), 319–327. https://doi.org/10.15288/jsad.2014.75.319
Grundy, A. M., Gondoli, D. M., & Blodgett Salafia, E. H. (2007). Marital conflict and preadolescent behavioral competence: Maternal knowledge as a longitudinal mediator. Journal of Family Psychology, 21(4), 675–682. https://doi.org/10.1037/0893-3200.21.4.675
Gu, F., Preacher, K. J., & Ferrer, E. (2014). A state space modeling approach to mediation analysis. Journal of Educational and Behavioral Statistics, 39(2), 117–143. https://doi.org/10.3102/1076998614524823
Gunn, R. L., Steingrimsson, J. A., Merrill, J. E., Souza, T., & Barnett, N. (2021). Characterising patterns of alcohol use among heavy drinkers: A cluster analysis utilising alcohol biosensor data. Drug and Alcohol Review, 40(7), 1155–1164. https://doi.org/10.1111/dar.13306
Hall, P. (2003). A short prehistory of the bootstrap. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994970
Hamaker, E. L., Ceulemans, E., Grasman, R. P. P. P., & Tuerlinckx, F. (2015). Modeling affect dynamics: State of the art and future challenges. Emotion Review, 7(4), 316–322. https://doi.org/10.1177/1754073915590619
Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40(2), 207–233. https://doi.org/10.1207/s15327906mbr4002_3
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889
Hamaker, E. L., & Muth’en, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. Psychological Methods, 25(3), 365–379. https://doi.org/10.1037/met0000239
Hamaker, E. L., Schuurman, N. K., & Zijlmans, E. A. O. (2016). Using a few snapshots to distinguish mountains from waves: Weak factorial invariance in the context of trait-state research. Multivariate Behavioral Research, 52(1), 47–60. https://doi.org/10.1080/00273171.2016.1251299
Hamilton, J. D. (1994). Time series analysis. Princeton University Press.
Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge University Press. https://doi.org/10.1017/cbo9781107049994
Hatemi-J, A. (2003). A new method to choose optimal lag order in stable and unstable VAR models. Applied Economics Letters, 10(3), 135–137. https://doi.org/10.1080/1350485022000041050
Hatemi-J, A. (2004). Multivariate tests for autocorrelation in the stable and unstable VAR models. Economic Modelling, 21(4), 661–683. https://doi.org/10.1016/j.econmod.2003.09.005
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408–420. https://doi.org/10.1080/03637750903310360
Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3rd ed., p. 732). Guilford Publications.
Hayes, A. F., & Cai, L. (2007). Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behavior Research Methods, 39(4), 709–722. https://doi.org/10.3758/bf03192961
Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis. Psychological Science, 24(10), 1918–1927. https://doi.org/10.1177/0956797613480187
Hecht, M., & Voelkle, M. C. (2019). Continuous-time modeling in prevention research: An illustration. International Journal of Behavioral Development, 45(1), 19–27. https://doi.org/10.1177/0165025419885026
Hecht, M., & Zitzmann, S. (2020a). A computationally more efficient Bayesian approach for estimating continuous-time models. Structural Equation Modeling: A Multidisciplinary Journal, 27(6), 829–840. https://doi.org/10.1080/10705511.2020.1719107
Hecht, M., & Zitzmann, S. (2020b). Sample size recommendations for continuous-time models: Compensating shorter time series with larger numbers of persons and vice versa. Structural Equation Modeling: A Multidisciplinary Journal, 28(2), 229–236. https://doi.org/10.1080/10705511.2020.1779069
Hecht, M., & Zitzmann, S. (2021). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 894–902. https://doi.org/10.1080/10705511.2021.1914627
Hektner, J., Schmidt, J., & Csikszentmihalyi, M. (2007). Experience sampling method: Measuring the quality of everyday life. SAGE Publications, Inc. https://doi.org/10.4135/9781412984201
Herring, T. E., Zamboanga, B. L., Olthuis, J. V., Pesigan, I. J. A., Martin, J. L., McAfee, N. W., & Martens, M. P. (2016). Utility of the Athlete Drinking Scale for assessing drinking motives among high school athletes. Addictive Behaviors, 60, 18–23. https://doi.org/10.1016/j.addbeh.2016.03.026
Hesterberg, T. C. (2014). What teachers should know about the bootstrap: Resampling in the undergraduate statistics curriculum. https://arxiv.org/abs/1411.5279
Hesterberg, T. C. (2015). What teachers should know about the bootstrap: Resampling in the undergraduate statistics curriculum. The American Statistician, 69(4), 371–386. https://doi.org/10.1080/00031305.2015.1089789
Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186
Hingson, R., Zha, W., & Smyth, D. (2017). Magnitude and trends in heavy episodic drinking, alcohol-impaired driving, and alcohol-related mortality and overdose hospitalizations among emerging adults of college ages 18–24 in the United States, 1998–2014. Journal of Studies on Alcohol and Drugs, 78(4), 540–548. https://doi.org/10.15288/jsad.2017.78.540
Hinkley, D. V. (1977). Jackknifing in unbalanced situations. Technometrics, 19(3), 285–292. https://doi.org/10.1080/00401706.1977.10489550
Holmes, S. (2003a). Bootstrapping phylogenetic trees: Theory and methods. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994979
Holmes, S. (2003b). Bradley Efron: A conversation with good friends. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994981
Horn, S. D., Horn, R. A., & Duncan, D. B. (1975). Estimating heteroscedastic variances in linear models. Journal of the American Statistical Association, 70(350), 380–385. https://doi.org/10.1080/01621459.1975.10479877
Horowitz, J. L. (2003). The bootstrap in econometrics. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994976
Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 307–324. https://doi.org/10.1080/10705511.2017.1369354
Iacus, S. M. (2008). Simulation and inference for stochastic differential equations. Springer New York. https://doi.org/10.1007/978-0-387-75839-8
James, L. R., & Brett, J. M. (1984). Mediators, moderators, and tests for mediation. Journal of Applied Psychology, 69(2), 307–321. https://doi.org/10.1037/0021-9010.69.2.307
Jensen, M. P., & Turk, D. C. (2014). Contributions of psychology to the understanding and treatment of people with chronic pain: Why it matters to ALL psychologists. American Psychologist, 69(2), 105–118. https://doi.org/10.1037/a0035641
Johnson, P. O., & Fay, L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika, 15(4), 349–367. https://doi.org/10.1007/bf02288864
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 57–93.
Jones, J. A., & Waller, N. G. (2013a). Computing confidence intervals for standardized regression coefficients. Psychological Methods, 18(4), 435–453. https://doi.org/10.1037/a0033269
Jones, J. A., & Waller, N. G. (2013b). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior [Technical report]. University of Minnesota-Twin Cities. http://users.cla.umn.edu/~nwaller/downloads/techreports/TR052913.pdf
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. https://doi.org/10.1007/s11336-013-9380-y
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: Useful tools for structural equation modeling. https://CRAN.R-project.org/package=semTools
Judd, C. M., & Kenny, D. A. (1981). Process analysis. Evaluation Review, 5(5), 602–619. https://doi.org/10.1177/0193841x8100500502
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552
Kaplan, H. B., Martin, S. S., & Robbins, C. (1984). Pathways to adolescent drug use: Self-derogation, peer influence, weakening of social controls, and early substance use. Journal of Health and Social Behavior, 25(3), 270. https://doi.org/10.2307/2136425
Kauermann, G., & Carroll, R. J. (2001). A note on the efficiency of sandwich covariance matrix estimation. Journal of the American Statistical Association, 96(456), 1387–1396. https://doi.org/10.1198/016214501753382309
Kazak, A. E. (2018). Editorial: Journal article reporting standards. American Psychologist, 73(1), 1–2. https://doi.org/10.1037/amp0000263
Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152. https://doi.org/10.1037/a0028086
Kenny, D. A., & Judd, C. M. (2013). Power anomalies in testing mediation. Psychological Science, 25(2), 334–339. https://doi.org/10.1177/0956797613502676
Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data analysis in social psychology. In D. T. Gilbert, G. Lindzey, & S. T. Fiske (Eds.), The handbook of social psychology (4th ed., pp. 233–265). McGraw Hill.
Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8(2), 115–128. https://doi.org/10.1037/1082-989x.8.2.115
Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63(1), 52–59. https://doi.org/10.1037/0022-006x.63.1.52
Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications. The MIT Press. https://doi.org/10.7551/mitpress/6444.001.0001
Kisbu-Sakarya, Y., MacKinnon, D. P., & Miočevi’c, M. (2014). The distribution of the product explains normal theory mediation confidence interval estimation. Multivariate Behavioral Research, 49(3), 261–268. https://doi.org/10.1080/00273171.2014.903162
Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59(1), 29–53. https://doi.org/10.1146/annurev.psych.59.103006.093548
Koopman, J., Howe, M., & Hollenbeck, J. R. (2014). Pulling the Sobel test up by its bootstraps. In C. E. Lance & R. J. Vandenberg, More statistical and methodological myths and urban legends: Doctrine, verity and fable in organizational and social sciences (pp. 224–243). Routledge/Taylor & Francis Group. https://doi.org/10.4324/9780203775851
Koopman, J., Howe, M., Hollenbeck, J. R., & Sin, H.-P. (2015). Small sample mediation testing: Misplaced confidence in bootstrapped confidence intervals. Journal of Applied Psychology, 100(1), 194–202. https://doi.org/10.1037/a0036635
Kossakowski, J. J., Groot, P. C., Haslbeck, J. M. B., Borsboom, D., & Wichers, M. (2017). Data from ’Critical slowing down as a personalized early warning signal for depression’. Journal of Open Psychology Data, 5. https://doi.org/10.5334/jopd.29
Kreiss, J.-P., & Lahiri, S. N. (2012). Bootstrap methods for time series. In Time series analysis: Methods and applications (pp. 3–26). Elsevier. https://doi.org/10.1016/b978-0-444-53858-1.00001-6
Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36(2), 249–277. https://doi.org/10.1207/s15327906mbr3602_06
Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 809–823. https://doi.org/10.1080/10705511.2018.1431046
Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The Annals of Statistics, 17(3). https://doi.org/10.1214/aos/1176347265
Kuppens, P. (2015). It’s about time: A special section on affect dynamics. Emotion Review, 7(4), 297–300. https://doi.org/10.1177/1754073915590947
Kurtzer, G. M., cclerget, Bauer, M., Kaneshiro, I., Trudgian, D., & Godlove, D. (2021). hpcng/singularity: Singularity 3.7.3. Zenodo. https://doi.org/10.5281/ZENODO.1310023
Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of compute. PLOS ONE, 12(5), e0177459. https://doi.org/10.1371/journal.pone.0177459
Kwan, J. L. Y., & Chan, W. (2011). Comparing standardized coefficients in structural equation modeling: A model reparameterization approach. Behavior Research Methods, 43(3), 730–745. https://doi.org/10.3758/s13428-011-0088-6
Kwan, J. L. Y., & Chan, W. (2014). Comparing squared multiple correlation coefficients using structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 21(2), 225–238. https://doi.org/10.1080/10705511.2014.882673
Lachowicz, M. J., Preacher, K. J., & Kelley, K. (2018). A novel measure of effect size for mediation analysis. Psychological Methods, 23(2), 244–261. https://doi.org/10.1037/met0000165
Lahiri, P. (2003). On the impact of bootstrap in survey sampling and small-area estimation. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994975
Lee, S. A. W., & Gates, K. M. (2023). From the individual to the group: Using idiographic analyses and two-stage random effects meta-analysis to obtain population level inferences for within-person processes. Multivariate Behavioral Research, 59(6), 1220–1239. https://doi.org/10.1080/00273171.2023.2229310
Leffingwell, T. R., Cooney, N. J., Murphy, J. G., Luczak, S., Rosen, G., Dougherty, D. M., & Barnett, N. P. (2012). Continuous objective monitoring of alcohol use: Twenty‐first century measurement using transdermal sensors. Alcoholism: Clinical and Experimental Research, 37(1), 16–22. https://doi.org/10.1111/j.1530-0277.2012.01869.x
Lele, S. R. (2003). Impact of bootstrap on the estimating functions. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994973
Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Su’arez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report. American Psychologist, 73(1), 26–46. https://doi.org/10.1037/amp0000151
Li, K. H., Raghunathan, T. E., & Rubin, D. B. (1991). Large-sample significance levels from multiply imputed data using moment-based statistics and an \(F\) reference distribution. Journal of the American Statistical Association, 86(416), 1065–1073. https://doi.org/10.1080/01621459.1991.10475152
Li, Y., Oravecz, Z., Zhou, S., Bodovski, Y., Barnett, I. J., Chi, G., Zhou, Y., Friedman, N. P., Vrieze, S. I., & Chow, S.-M. (2022). Bayesian forecasting with a regime-switching zero-inflated multilevel poisson regression model: An application to adolescent alcohol use with spatial covariates. Psychometrika, 87(2), 376–402. https://doi.org/10.1007/s11336-021-09831-9
Li, Y., Wood, J., Ji, L., Chow, S.-M., & Oravecz, Z. (2021). Fitting multilevel vector autoregressive models in Stan, JAGS, and Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 452–475. https://doi.org/10.1080/10705511.2021.1911657
Little, R. J. A., & Rubin, D. B. (2019). Statistical analysis with missing data (3rd ed.). Wiley. https://doi.org/10.1002/9781119482260
Lohmann, J. F., Zitzmann, S., Voelkle, M. C., & Hecht, M. (2022). A primer on continuous-time modeling in educational research: An exemplary application of a continuous-time latent curve model with structured residuals (CT-LCM-SR) to PISA data. Large-Scale Assessments in Education, 10(1). https://doi.org/10.1186/s40536-022-00126-8
Long, J. S., & Ervin, L. H. (2000). Using heteroscedasticity consistent standard errors in the linear regression model. The American Statistician, 54(3), 217–224. https://doi.org/10.1080/00031305.2000.10474549
Loossens, T., Mestdagh, M., Dejonckheere, E., Kuppens, P., Tuerlinckx, F., & Verdonck, S. (2020). The Affective Ising Model: A computational account of human affect dynamics. PLOS Computational Biology, 16(5), e1007860. https://doi.org/10.1371/journal.pcbi.1007860
Loossens, T., Tuerlinckx, F., & Verdonck, S. (2021). A comparison of continuous and discrete time modeling of affective processes in terms of predictive accuracy. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-85320-4
Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muth’en, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203–229. https://doi.org/10.1037/a0012869
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-27752-1
Lyapunov, A. M. (1992). The general problem of the stability of motion. International Journal of Control, 55(3), 531–534. https://doi.org/10.1080/00207179208934253
MacKinnon, D. P. (1994). Analysis of mediating variables in prevention and intervention research. NIDA Research Monograph, 139, 127–153.
MacKinnon, D. P. (2008). Introduction to statistical mediation analysis (p. 488). Erlbaum Psych Press. https://doi.org/10.4324/9780203809556
Mackinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17(2), 144–158. https://doi.org/10.1177/0193841x9301700202
MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384–389. https://doi.org/10.3758/bf03193007
MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding and suppression effect. Prevention Science, 1(4), 173–181. https://doi.org/10.1023/a:1026595011371
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104. https://doi.org/10.1037/1082-989x.7.1.83
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128. https://doi.org/10.1207/s15327906mbr3901_4
MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305–325. https://doi.org/10.1016/0304-4076(85)90158-7
Maggs, J. L., & Schulenberg, J. E. (2005). Initiation and course of alcohol consumption among adolescents and young adults. In Recent developments in alcoholism (pp. 29–47). Kluwer Academic Publishers-Plenum Publishers. https://doi.org/10.1007/0-306-48626-1_2
Manthey, J., Hassan, S. A., Carr, S., Kilian, C., Kuitunen-Paul, S., & Rehm, J. (2021). What are the economic costs to society attributable to alcohol use? A systematic review and modelling study. PharmacoEconomics, 39(7), 809–822. https://doi.org/10.1007/s40273-021-01031-8
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. https://doi.org/10.1037/1082-989x.12.1.23
Maxwell, S. E., Cole, D. A., & Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Multivariate Behavioral Research, 46(5), 816–841. https://doi.org/10.1080/00273171.2011.606716
McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577–605. https://doi.org/10.1146/annurev.psych.60.110707.163612
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37(2), 234–251. https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
McKendrick, G., & Graziane, N. M. (2020). Drug-induced conditioned place preference and its practical use in substance use disorder research. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.582147
McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610–635. https://doi.org/10.1037/met0000250
McNeish, D., & MacKinnon, D. P. (2022). Intensive longitudinal mediation in Mplus. Psychological Methods. https://doi.org/10.1037/met0000536
Mehl, M. R., Conner, T. S., & Csikszentmihalyi, Mihaly. (2011). Handbook of research methods for studying daily life. Guilford Publications.
Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259–284. https://doi.org/10.1037/1082-989x.10.3.259
Merkel, D. (2014). Docker: Lightweight Linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105(1), 156–166. https://doi.org/10.1037/0033-2909.105.1.156
Millsap, R. E. (2011). Statistical approaches to measurement invariance. Routledge. https://doi.org/10.4324/9780203821961
Miocevic, M., Gonzalez, O., Valente, M. J., & MacKinnon, D. P. (2017). A tutorial in Bayesian potential outcomes mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 25(1), 121–136. https://doi.org/10.1080/10705511.2017.1342541
Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement: Interdisciplinary Research & Perspective, 2(4), 201–218. https://doi.org/10.1207/s15366359mea0204_1
Molenaar, P. C. M. (2017). Equivalent dynamic models. Multivariate Behavioral Research, 52(2), 242–258. https://doi.org/10.1080/00273171.2016.1277681
Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18(2), 112–117. https://doi.org/10.1111/j.1467-8721.2009.01619.x
Moneta, A., Chlaß, N., Entner, D., & Hoyer, P. (2011). Causal search in structural vector autoregressive models. Journal of Machine Learning Research - Proceedings Track, 12, 95–114.
Mulder, J. D. (2022). Power analysis for the random intercept cross-lagged panel model using the powRICLPM R-package. Structural Equation Modeling: A Multidisciplinary Journal, 30(4), 645–658. https://doi.org/10.1080/10705511.2022.2122467
Mulder, J. D., & Hamaker, E. L. (2020). Three extensions of the random intercept cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 638–648. https://doi.org/10.1080/10705511.2020.1784738
Muth’en, B. O., & Asparouhov, T. (2022). Latent transition analysis with random intercepts (RI-LTA). Psychological Methods, 27(1), 1–16. https://doi.org/10.1037/met0000370
Muth’en, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2(4), 371–402. https://doi.org/10.1037/1082-989x.2.4.371
Muth’en, L. K., & Muth’en, B. O. (2017). Mplus user’s guide. Eighth edition. Muthén & Muthén.
National Research Council. (1982). An assessment of research-doctorate programs in the United States: Social and behavioral sciences. National Academies Press. https://doi.org/10.17226/9781
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535–549. https://doi.org/10.1007/s11336-014-9435-8
Nel, D. G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients. Linear Algebra and Its Applications, 67, 137–145. https://doi.org/10.1016/0024-3795(85)90191-0
Nesselroade, J. R., & Cable, D. G. (1974). Sometimes, it’s okay to factor difference scores" - the separation of state and trait anxiety. Multivariate Behavioral Research, 9(3), 273–284. https://doi.org/10.1207/s15327906mbr0903_3
Newey, W. K., & West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703. https://doi.org/10.2307/1913610
Norman, T., Peacock, A., Ferguson, S. G., Kuntsche, E., & Bruno, R. (2020). Combining transdermal and breath alcohol assessments, real‐time drink logs and retrospective self‐reports to measure alcohol consumption and intoxication across a multi‐day music festival. Drug and Alcohol Review, 40(7), 1112–1121. https://doi.org/10.1111/dar.13215
Northcote, J., & Livingston, M. (2011). Accuracy of self-reported drinking: Observational verification of “last occasion” drink estimates of young adults. Alcohol and Alcoholism, 46(6), 709–713. https://doi.org/10.1093/alcalc/agr138
Nüst, D., Eddelbuettel, D., Bennett, D., Cannoodt, R., Clark, D., Dar’oczi, G., Edmondson, M., Fay, C., Hughes, E., Kjeldgaard, L., Lopp, S., Marwick, B., Nolis, H., Nolis, J., Ooi, H., Ram, K., Ross, N., Shepherd, L., S’olymos, P., … Xiao, N. (2020). The Rockerverse: Packages and applications for containerisation with R. The R Journal, 12(1), 437. https://doi.org/10.32614/rj-2020-007
O’Laughlin, K. D., Martin, M. J., & Ferrer, E. (2018). Cross-sectional analysis of longitudinal mediation processes. Multivariate Behavioral Research, 53(3), 375–402. https://doi.org/10.1080/00273171.2018.1454822
O’Rourke, H. P., & MacKinnon, D. P. (2018). Reasons for testing mediation in the absence of an intervention effect: A research imperative in prevention and intervention research. Journal of Studies on Alcohol and Drugs, 79(2), 171–181. https://doi.org/10.15288/jsad.2018.79.171
O’Rourke, H. P., & MacKinnon, D. P. (2019). The importance of mediation analysis in substance-use prevention. In Advances in prevention science (pp. 233–246). Springer International Publishing. https://doi.org/10.1007/978-3-030-00627-3_15
Oehlert, G. W. (1992). A note on the delta method. The American Statistician, 46(1), 27–29. https://doi.org/10.1080/00031305.1992.10475842
Oh, H., Hunter, M. D., & Chow, S.-M. (2025). Measurement model misspecification in dynamic structural equation models: Power, reliability, and other considerations. Structural Equation Modeling: A Multidisciplinary Journal, 1–18. https://doi.org/10.1080/10705511.2025.2452884
Ollendick, T. H., & Prinz, R. J. (Eds.). (1996). Advances in clinical child psychology: Volume 18. Springer US. https://doi.org/10.1007/978-1-4613-0323-7
Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent stochastic differential equation model for affective dynamics. Psychological Methods, 16(4), 468–490. https://doi.org/10.1037/a0024375
Oravecz, Z., Wood, J., & Ram, N. (2018). On fitting a continuous-time stochastic process model in the Bayesian framework. In Continuous time modeling in the behavioral and related sciences (pp. 55–78). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_3
Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021). Testing prospective effects in longitudinal research: Comparing seven competing cross-lagged models. Journal of Personality and Social Psychology, 120(4), 1013–1034. https://doi.org/10.1037/pspp0000358
Orzek, J. H., & Voelkle, M. C. (2023). Regularized continuous time structural equation models: A network perspective. Psychological Methods, 28(6), 1286–1320. https://doi.org/10.1037/met0000550
Osborne, R. T., & Suddick, D. E. (1972). A longitudinal investigation of the intellectual differentiation hypothesis. The Journal of Genetic Psychology, 121(1), 83–89. https://doi.org/10.1080/00221325.1972.10533131
Ou, L., Hunter, M. D., & Chow, S.-M. (2019). What’s for dynr: A package for linear and nonlinear dynamic modeling in R. The R Journal, 11(1), 91. https://doi.org/10.32614/rj-2019-012
Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent variables (pp. 201–244). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11760-2_7
Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65(2), 199–215. https://doi.org/10.1007/bf02294374
Oud, J. H., van den Bercken, J. H., & Essers, R. J. (1990). Longitudinal factor score estimation using the Kalman filter. Applied Psychological Measurement, 14(4), 395–418. https://doi.org/10.1177/014662169001400406
Park, J. J., Chow, S.-M., Epskamp, S., & Molenaar, P. C. M. (2024). Subgrouping with chain graphical VAR models. Multivariate Behavioral Research, 59(3), 543–565. https://doi.org/10.1080/00273171.2023.2289058
Park, J. J., Fisher, Z. F., Chow, S.-M., & Molenaar, P. C. M. (2023a). Evaluating discrete time methods for subgrouping continuous processes. Multivariate Behavioral Research, 1–13. https://doi.org/10.1080/00273171.2023.2235685
Park, J. J., Fisher, Z., Chow, S.-M., & Molenaar, P. C. M. (2023b). On subgrouping continuous processes in discrete time. Multivariate Behavioral Research, 58(1), 154–155. https://doi.org/10.1080/00273171.2022.2160957
Pastor, D. A., & Lazowski, R. A. (2017). On the multilevel nature of meta-analysis: A tutorial, comparison of software programs, and discussion of analytic choices. Multivariate Behavioral Research, 53(1), 74–89. https://doi.org/10.1080/00273171.2017.1365684
Patrick, M. E., & Maggs, J. L. (2007). Short‐term changes in plans to drink and importance of positive and negative alcohol consequences. Journal of Adolescence, 31(3), 307–321. https://doi.org/10.1016/j.adolescence.2007.06.002
Patrick, M. E., & Maggs, J. L. (2009). Profiles of motivations for alcohol use and sexual behavior among first‐year university students. Journal of Adolescence, 33(5), 755–765. https://doi.org/10.1016/j.adolescence.2009.10.003
Patrick, M. E., & Terry-McElrath, Y. M. (2016). High-intensity drinking by underage young adults in the united states: Underage high-intensity drinking. Addiction, 112(1), 82–93. https://doi.org/10.1111/add.13556
Patrick, M., Miech, R., Johnston, L., & O, P. (2023). Monitoring the Future Panel Study annual report: National data on substance use among adults ages 19 to 60, 1976-2022. Institute for Social Research, University of Michigan; Institute for Social Research, The University of Michigan. https://doi.org/10.7826/isr-um.06.585140.002.07.0002.2023
Pawitan, Y. (2013). In all likelihood: Statistical modelling and inference using likelihood. Oxford University Press.
Pesigan, I. J. A. (2022). Confidence intervals for standardized coefficients: Applied to regression coefficients in primary studies and indirect effects in meta-analytic structural equation modeling [PhD thesis]. University of Macau.
Pesigan, I. J. A., & Cheung, S. F. (2020). SEM-based methods to form confidence intervals for indirect effect: Still applicable given nonnormality, under certain conditions. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.571928
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods, 56(3), 1678–1696. https://doi.org/10.3758/s13428-023-02114-4
Pesigan, I. J. A., Luyckx, K., & Alampay, L. P. (2014). Brief report: Identity processes in Filipino late adolescents and young adults: Parental influences and mental health outcomes. Journal of Adolescence, 37(5), 599–604. https://doi.org/10.1016/j.adolescence.2014.04.012
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research, 58(6), 1183–1186. https://doi.org/10.1080/00273171.2023.2201277
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556. https://doi.org/10.3102/00346543074004525
Piasecki, T. M. (2019). Assessment of alcohol use in the natural environment. Alcoholism: Clinical and Experimental Research, 43(4), 564–577. https://doi.org/10.1111/acer.13975
Politis, D. N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994977
Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303–1313. https://doi.org/10.1080/01621459.1994.10476870
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437–448. https://doi.org/10.3102/10769986031004437
Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731. https://doi.org/10.3758/bf03206553
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.3758/brm.40.3.879
Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16(2), 93–115. https://doi.org/10.1037/a0022658
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848
Prince, M. A., Read, J. P., & Colder, C. R. (2019). Trajectories of college alcohol involvement and their associations with later alcohol use disorder symptoms. Prevention Science, 20(5), 741–752. https://doi.org/10.1007/s11121-018-0974-6
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
R Core Team. (2025). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27(1), 85–95.
Rasmussen, J. L. (1987). Estimating correlation coefficients: Bootstrap and parametric approaches. Psychological Bulletin, 101(1), 136–139. https://doi.org/10.1037/0033-2909.101.1.136
Ray, L. A., Du, H., Grodin, E., Bujarski, S., Meredith, L., Ho, D., Nieto, S., & Wassum, K. (2020). Capturing habitualness of drinking and smoking behavior in humans. Drug and Alcohol Dependence, 207, 107738. https://doi.org/10.1016/j.drugalcdep.2019.107738
Raykov, T., & Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling: A Multidisciplinary Journal, 11(4), 621–637. https://doi.org/10.1207/s15328007sem1104_7
Reichardt, C. S. (2011). Commentary: Are three waves of data sufficient for assessing mediation? Multivariate Behavioral Research, 46(5), 842–851. https://doi.org/10.1080/00273171.2011.606740
Reinert, D. F., & Allen, J. P. (2007). The alcohol use disorders identification test: An update of research findings. Alcoholism: Clinical and Experimental Research, 31(2), 185–199. https://doi.org/10.1111/j.1530-0277.2006.00295.x
Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychological Methods, 25(1), 30–45. https://doi.org/10.1037/met0000220
Richards, V. L., Barnett, N. P., Cook, R. L., Leeman, R. F., Souza, T., Case, S., Prins, C., Cook, C., & Wang, Y. (2022). Correspondence between alcohol use measured by a wrist‐worn alcohol biosensor and self‐report via ecological momentary assessment over a 2‐week period. Alcohol: Clinical and Experimental Research, 47(2), 308–318. https://doi.org/10.1111/acer.14995
Richards, V. L., Glenn, S. D., Turrisi, R. J., Mallett, K. A., Ackerman, S., & Russell, M. A. (2024). Transdermal alcohol concentration features predict alcohol‐induced blackouts in college students. Alcohol, Clinical and Experimental Research, 48(5), 880–888. https://doi.org/10.1111/acer.15290
Richards, V. L., Mallett, K. A., Turrisi, R. J., Glenn, S. D., & Russell, M. A. (2025). Profiles of transdermal alcohol concentration and their prediction of negative and positive alcohol-related consequences in young adults’ natural settings. Psychology of Addictive Behaviors. https://doi.org/10.1037/adb0001054
Richards, V. L., Turrisi, R. J., & Russell, M. A. (2024). Subjective intoxication predicts alcohol-related consequences at equivalent alcohol concentrations in young adults using ecological momentary assessment and alcohol sensors. Psychology of Addictive Behaviors, 38(3), 334–346. https://doi.org/10.1037/adb0000993
Roache, J. D., Karns-Wright, T. E., Goros, M., Hill-Kapturczak, N., Mathias, C. W., & Dougherty, D. M. (2019). Processing transdermal alcohol concentration (TAC) data to detect low-level drinking. Alcohol, 81, 101–110. https://doi.org/10.1016/j.alcohol.2018.08.014
Robey, R. R., & Barcikowski, R. S. (1992). Type I error and the number of iterations in Monte Carlo studies of robustness. British Journal of Mathematical and Statistical Psychology, 45(2), 283–288. https://doi.org/10.1111/j.2044-8317.1992.tb00993.x
Robinson, M. E., & Riley, J. I. L. (1999). The role of emotion in pain. In R. J. Gatchel & D. C. Turk (Eds.), Psychosocial factors in pain: Critical perspectives (pp. 74–88). The Guilford Press.
Rogosa, D. R. (1979). Causal models in longitudinal research: Rationale, formulation, and interpretation. In J. R. Nesselroade & P. B. Baltes (Eds.), Longitudinal methodology in the study of behavior and development. Academic Press.
Rogosa, D. R. (1980). A critique of cross-lagged correlation. Psychological Bulletin, 88(2), 245–258. https://doi.org/10.1037/0033-2909.88.2.245
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2). https://doi.org/10.18637/jss.v048.i02
Rousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2021). The percentile bootstrap: A primer with step-by-step instructions in R. Advances in Methods and Practices in Psychological Science, 4(1), 1–10. https://doi.org/10.1177/2515245920911881
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. https://doi.org/10.1093/biomet/63.3.581
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316696
Russell, M. A., Linden-Carmichael, A. N., Lanza, S. T., Fair, E. V., Sher, K. J., & Piasecki, T. M. (2020). Affect relative to day-level drinking initiation: Analyzing ecological momentary assessment data with multilevel spline modeling. Psychology of Addictive Behaviors, 34(3), 434–446. https://doi.org/10.1037/adb0000550
Russell, M. A., Richards, V. L., Turrisi, R. J., Exten, C. L., Pesigan, I. J. A., & Rodriguez, G. C. (2024). Profiles of alcohol intoxication and their associated risks in young adults’ natural settings: A multilevel latent profile analysis applied to daily transdermal alcohol concentration data. Psychology of Addictive Behaviors. https://doi.org/10.1037/adb0001022
Russell, M. A., Smyth, J. M., Turrisi, R., & Rodriguez, G. C. (2023). Baseline protective behavioral strategy use predicts more moderate transdermal alcohol concentration dynamics and fewer negative consequences of drinking in young adults’ natural settings. Psychology of Addictive Behaviors, 38(3), 347–359. https://doi.org/10.1037/adb0000941
Russell, M. A., Turrisi, R. J., & Smyth, J. M. (2022). Transdermal sensor features correlate with ecological momentary assessment drinking reports and predict alcohol‐related consequences in young adults’ natural settings. Alcoholism: Clinical and Experimental Research, 46(1), 100–113. https://doi.org/10.1111/acer.14739
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87(1), 214–252. https://doi.org/10.1007/s11336-021-09767-0
Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous-time approach to intensive longitudinal data: What, why, and how? In Continuous time modeling in the behavioral and related sciences (pp. 27–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6_2
Sacks, J. J., Gonzales, K. R., Bouchery, E. E., Tomedi, L. E., & Brewer, R. D. (2015). 2010 national and state costs of excessive alcohol consumption. American Journal of Preventive Medicine, 49(5), e73–e79. https://doi.org/10.1016/j.amepre.2015.05.031
Sakai, J. T., Mikulich-Gilbertson, S. K., Long, R. J., & Crowley, T. J. (2006). Validity of transdermal alcohol monitoring: Fixed and self‐regulated dosing. Alcoholism: Clinical and Experimental Research, 30(1), 26–33. https://doi.org/10.1111/j.1530-0277.2006.00004.x
SAMHSA. (2020). Key substance use and mental health indicators in the United States: Results from the 2019 National Survey on Drug Use and Health (HHS Publication No. PEP20-07-01-001, NSDUH Series H-55). Center for Behavioral Health Statistics; Quality, Substance Abuse; Mental Health Services Administration. https://www.samhsa.gov/data/
SAMHSA. (2023). Key substance use and mental health indicators in the United States: Results from the 2022 National Survey on Drug Use and Health (HHS Publication No. PEP23-07-01-006, NSDUH Series H-58). Center for Behavioral Health Statistics; Quality, Substance Abuse; Mental Health Services Administration. https://www.samhsa.gov/data/report/2022-nsduh-annual-national-report
Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R., & Grant, M. (1993). Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption‐II. Addiction, 88(6), 791–804. https://doi.org/10.1111/j.1360-0443.1993.tb02093.x
Savalei, V., & Rosseel, Y. (2021). Computational options for standard errors and test statistics with incomplete normal and nonnormal data in SEM. Structural Equation Modeling: A Multidisciplinary Journal, 29(2), 163–181. https://doi.org/10.1080/10705511.2021.1877548
Schafer, J. L. (1997). Analysis of incomplete multivariate data. Chapman; Hall/CRC. https://doi.org/10.1201/9780367803025
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177. https://doi.org/10.1037/1082-989x.7.2.147
Schenker, N. (1987). Better bootstrap confidence intervals: comment. Journal of the American Statistical Association, 82(397), 192. https://doi.org/10.2307/2289150
Schermerhorn, A. C., Chow, S.-M., & Cummings, E. M. (2010). Developmental family processes and interparental conflict: Patterns of microlevel influences. Developmental Psychology, 46(4), 869–885. https://doi.org/10.1037/a0019662
Schouten, R. M., Lugtig, P., & Vink, G. (2018). Generating missing values for simulation purposes: A multivariate amputation procedure. Journal of Statistical Computation and Simulation, 88(15), 2909–2930. https://doi.org/10.1080/00949655.2018.1491577
Schulenberg, J. E., Maggs, J. L., & O’Malley, P. M. (2003). How and why the understanding of developmental continuity and discontinuity is important. In M. J. Mortimer Jeylan T.and Shanahan (Ed.), Handbook of the life course (pp. 413–436). Springer US. https://doi.org/10.1007/978-0-306-48247-2_19
Schulenberg, J. E., O’Malley, P. M., Bachman, J. G., Wadsworth, K. N., & Johnston, L. D. (1996). Getting drunk and growing up: Trajectories of frequent binge drinking during the transition to young adulthood. Journal of Studies on Alcohol, 57(3), 289–304. https://doi.org/10.15288/jsa.1996.57.289
Schulenberg, J. E., Patrick, M. E., Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Miech, R. A. (2021). Monitoring the Future national survey results on drug use, 1975-2020: Volume II, college students and adults ages 19–60. Institute for Social Research, The University of Michigan.
Schultzberg, M., & Muth’en, B. (2017). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495–515. https://doi.org/10.1080/10705511.2017.1392862
Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L. (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological Methods, 21(2), 206–221. https://doi.org/10.1037/met0000062
Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel autoregressive modeling. Psychological Methods, 24(1), 70–91. https://doi.org/10.1037/met0000188
Schuurman, N. K., Houtveen, J. H., & Hamaker, E. L. (2015). Incorporating measurement error in n = 1 psychological autoregressive modeling. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01038
Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6(2-3), 144–164. https://doi.org/10.1080/15427600902911247
Serlin, R. C. (2000). Testing for robustness in Monte Carlo studies. Psychological Methods, 5(2), 230–240. https://doi.org/10.1037/1082-989x.5.2.230
Serlin, R. C., & Lapsley, D. K. (1985). Rationality in psychological research: The good-enough principle. American Psychologist, 40(1), 73–83. https://doi.org/10.1037/0003-066x.40.1.73
Shao, J. (2003). Impact of the bootstrap on sample surveys. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994974
Shapiro, A., & Browne, M. W. (1990). On the treatment of correlation structures as covariance structures. Linear Algebra and Its Applications, 127, 567–587. https://doi.org/10.1016/0024-3795(90)90362-g
Shaygan, M., & Karami, Z. (2020). Chronic pain in adolescents: Predicting role of emotional intelligence, self-esteem and parenting style. International Journal of Community Based Nursing & Midwifery, 8. https://doi.org/10.30476/ijcbnm.2020.83153.1129
Shiffman, S. (2009). Ecological momentary assessment (EMA) in studies of substance use. Psychological Assessment, 21(4), 486–497. https://doi.org/10.1037/a0017074
Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4(1), 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
Shrout, P. E. (2011). Commentary: Mediation analysis, causal process, and cross-sectional data. Multivariate Behavioral Research, 46(5), 852–860. https://doi.org/10.1080/00273171.2011.606718
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422–445. https://doi.org/10.1037/1082-989x.7.4.422
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: With R examples. Springer International Publishing. https://doi.org/10.1007/978-3-319-52452-8
Simons, J. S., Wills, T. A., Emery, N. N., & Marks, R. M. (2015). Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms. Addictive Behaviors, 50, 205–212. https://doi.org/10.1016/j.addbeh.2015.06.042
Singer, H. (2012). SEM modeling with singular moment matrices part II: ML-estimation of sampled stochastic differential equations. The Journal of Mathematical Sociology, 36(1), 22–43. https://doi.org/10.1080/0022250x.2010.532259
Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. The Annals of Statistics, 9(6). https://doi.org/10.1214/aos/1176345636
Sjoerds, Z., de Wit, S., van den Brink, W., Robbins, T., Beekman, A. T. F., Penninx, B. W., & Veltman, D. J. (2013). Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Translational Psychiatry, 3(12), e337–e337. https://doi.org/10.1038/tp.2013.107
Smith, K. E., & Juarascio, A. (2019). From ecological momentary assessment (EMA) to ecological momentary intervention (EMI): Past and future directions for ambulatory assessment and interventions in eating disorders. Current Psychiatry Reports, 21(7). https://doi.org/10.1007/s11920-019-1046-8
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290. https://doi.org/10.2307/270723
Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. Sociological Methodology, 16, 159. https://doi.org/10.2307/270922
Sobel, M. E. (1987). Direct and indirect effects in linear structural equation models. Sociological Methods & Research, 16(1), 155–176. https://doi.org/10.1177/0049124187016001006
Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Statistical Science, 18(2). https://doi.org/10.1214/ss/1063994980
Staudenmayer, J., & Buonaccorsi, J. P. (2005). Measurement error in linear autoregressive models. Journal of the American Statistical Association, 100(471), 841–852. https://doi.org/10.1198/016214504000001871
Stoffer, D. S., & Wall, K. D. (1991). Bootstrapping state-space models: Gaussian maximum likelihood estimation and the Kalman filter. Journal of the American Statistical Association, 86(416), 1024–1033. https://doi.org/10.1080/01621459.1991.10475148
Swift, R. (2000). Transdermal alcohol measurement for estimation of blood alcohol concentration. Alcoholism: Clinical and Experimental Research, 24(4), 422–423. https://doi.org/10.1111/j.1530-0277.2000.tb02006.x
Taylor, A. B., & MacKinnon, D. P. (2012). Four applications of permutation methods to testing a single-mediator model. Behavior Research Methods, 44(3), 806–844. https://doi.org/10.3758/s13428-011-0181-x
Taylor, A. B., MacKinnon, D. P., & Tein, J.-Y. (2007). Tests of the three-path mediated effect. Organizational Research Methods, 11(2), 241–269. https://doi.org/10.1177/1094428107300344
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(3), 273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x
Tofighi, D., & Kelley, K. (2019). Indirect effects in sequential mediation models: Evaluating methods for hypothesis testing and confidence interval formation. Multivariate Behavioral Research, 55(2), 188–210. https://doi.org/10.1080/00273171.2019.1618545
Tofighi, D., & Kelley, K. (2020). Improved inference in mediation analysis: Introducing the model-based constrained optimization procedure. Psychological Methods, 25, 496–515. https://doi.org/10.1037/met0000259
Tofighi, D., & MacKinnon, D. P. (2015). Monte Carlo confidence intervals for complex functions of indirect effects. Structural Equation Modeling: A Multidisciplinary Journal, 23(2), 194–205. https://doi.org/10.1080/10705511.2015.1057284
Turk, D. C., & Monarch, E. S. (2018). Biopsychosocial perspective on chronic pain. In D. C. Turk & R. J. Gatchel (Eds.), Psychological approaches to pain management: A practitioner’s handbook (3rd ed.). The Guilford Press.
Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of the brownian motion. Physical Review, 36(5), 823–841. https://doi.org/10.1103/physrev.36.823
Usami, S. (2020). On the differences between general cross-lagged panel model and random-intercept cross-lagged panel model: Interpretation of cross-lagged parameters and model choice. Structural Equation Modeling: A Multidisciplinary Journal, 28(3), 331–344. https://doi.org/10.1080/10705511.2020.1821690
Usami, S. (2022). Within-person variability score-based causal inference: A two-step estimation for joint effects of time-varying treatments. Psychometrika, 88(4), 1466–1494. https://doi.org/10.1007/s11336-022-09879-1
Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24(5), 637–657. https://doi.org/10.1037/met0000210
van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman; Hall/CRC. https://doi.org/10.1201/9780429492259
van Buuren, S., Brand, J. P. L., Groothuis-Oudshoorn, C. G. M., & Rubin, D. B. (2006). Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation, 76(12), 1049–1064. https://doi.org/10.1080/10629360600810434
van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3). https://doi.org/10.18637/jss.v045.i03
van Egmond, K., Wright, C. J. C., Livingston, M., & Kuntsche, E. (2020). Wearable transdermal alcohol monitors: A systematic review of detection validity, and relationship between transdermal and breath alcohol concentration and influencing factors. Alcoholism: Clinical and Experimental Research, 44(10), 1918–1932. https://doi.org/10.1111/acer.14432
van Montfort, K., Oud, J. H. L., & Satorra, A. (Eds.). (2010). Longitudinal research with latent variables. Springer.
van Montfort, K., Oud, J. H. L., & Voelkle, M. C. (Eds.). (2018). Continuous time modeling in the behavioral and related sciences. Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6
Vanhasbroeck, N., Ariens, S., Tuerlinckx, F., & Loossens, T. (2021). Computational models for affect dynamics. In Affect dynamics (pp. 213–260). Springer International Publishing. https://doi.org/10.1007/978-3-030-82965-0_10
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer New York. https://doi.org/10.1007/978-0-387-21706-2
Venzon, D. J., & Moolgavkar, S. H. (1988). A method for computing profile-likelihood-based confidence intervals. Applied Statistics, 37(1), 87. https://doi.org/10.2307/2347496
Ver Hoef, J. M. (2012). Who invented the delta method? The American Statistician, 66(2), 124–127. https://doi.org/10.1080/00031305.2012.687494
Voelkle, M. C., & Oud, J. H. L. (2012). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and Statistical Psychology, 66(1), 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x
Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176–192. https://doi.org/10.1037/a0027543
Von Korff, M., & Simon, G. (1996). The relationship between pain and depression. British Journal of Psychiatry, 168(S30), 101–108. https://doi.org/10.1192/s0007125000298474
Vuorre, M., & Bolger, N. (2017). Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience. Behavior Research Methods, 50(5), 2125–2143. https://doi.org/10.3758/s13428-017-0980-9
Waller, N. G. (2022). fungible: Psychometric functions from the Waller Lab. The R Foundation. https://CRAN.R-project.org/package=fungible
Wang, K. (2018). Understanding power anomalies in mediation analysis. Psychometrika, 83(2), 387–406. https://doi.org/10.1007/s11336-017-9598-1
Wang, L., & Zhang, Q. (2020). Investigating the impact of the time interval selection on autoregressive mediation modeling: Result interpretations, effect reporting, and temporal designs. Psychological Methods, 25(3), 271–291. https://doi.org/10.1037/met0000235
Wechsler, H., Dowdall, G. W., Davenport, A., & Rimm, E. B. (1995). A gender-specific measure of binge drinking among college students. American Journal of Public Health, 85(7), 982–985. https://doi.org/10.2105/ajph.85.7.982
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817–838. https://doi.org/10.2307/1912934
Wichers, M., Groot, P. C., Psychosystems, ESM Group, & EWS Group. (2016). Critical slowing down as a personalized early warning signal for depression. Psychotherapy and Psychosomatics, 85(2), 114–116. https://doi.org/10.1159/000441458
Wills, T. A., & Filer, M. (1996). Stress-coping model of adolescent substance use. In Advances in clinical child psychology (pp. 91–132). Springer US. https://doi.org/10.1007/978-1-4613-0323-7_3
Wright, S. (1918). On the nature of size factors. Genetics, 3(4), 367–374. https://doi.org/10.1093/genetics/3.4.367
Wright, S. (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs. Proceedings of the National Academy of Sciences of the United States of America, 6(6), 320–332. http://www.jstor.org/stable/84353
Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5(3), 161–215. https://doi.org/10.1214/aoms/1177732676
Wu, W., & Jia, F. (2013). A new procedure to test mediation with missing data through nonparametric bootstrapping and multiple imputation. Multivariate Behavioral Research, 48(5), 663–691. https://doi.org/10.1080/00273171.2013.816235
Yu, S. M., Pesigan, I. J. A., Zhang, M. X., & Wu, A. M. S. (2019). Psychometric validation of the Internet Gaming Disorder-20 Test among Chinese middle school and university students. Journal of Behavioral Addictions, 8(2), 295–305. https://doi.org/10.1556/2006.8.2019.18
Yu, S. M., Wu, A. M. S., & Pesigan, I. J. A. (2015). Cognitive and psychosocial health risk factors of social networking addiction. International Journal of Mental Health and Addiction, 14(4), 550–564. https://doi.org/10.1007/s11469-015-9612-8
Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30(1), 165–200. https://doi.org/10.1111/0081-1750.00078
Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. https://doi.org/10.1007/s11336-011-9224-6
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301–322. https://doi.org/10.1037/a0016972
Yzerbyt, V., Muller, D., Batailler, C., & Judd, C. M. (2018). New recommendations for testing indirect effects in mediational models: The need to report and test component paths. Journal of Personality and Social Psychology, 115(6), 929–943. https://doi.org/10.1037/pspa0000132
Zamboanga, B. L., Iwamoto, D. K., Pesigan, I. J. A., & Tomaso, C. C. (2015). A “player’s” game? Masculinity and drinking games participation among White and Asian American male college freshmen. Psychology of Men & Masculinity, 16(4), 468–473. https://doi.org/10.1037/a0039101
Zamboanga, B. L., Pesigan, I. J. A., Tomaso, C. C., Schwartz, S. J., Ham, L. S., Bersamin, M., Kim, S. Y., Cano, M. A., Castillo, L. G., Forthun, L. F., Whitbourne, S. K., & Hurley, E. A. (2015). Frequency of drinking games participation and alcohol-related problems in a multiethnic sample of college students: Do gender and ethnicity matter? Addictive Behaviors, 41, 112–116. https://doi.org/10.1016/j.addbeh.2014.10.002
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11(10). https://doi.org/10.18637/jss.v011.i10
Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9). https://doi.org/10.18637/jss.v016.i09
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95(1). https://doi.org/10.18637/jss.v095.i01
Zhang, G. (2018). Testing process factor analysis models using the parametric bootstrap. Multivariate Behavioral Research, 53(2), 219–230. https://doi.org/10.1080/00273171.2017.1415123
Zhang, G., & Browne, M. W. (2010). Bootstrap standard error estimates in dynamic factor analysis. Multivariate Behavioral Research, 45(3), 453–482. https://doi.org/10.1080/00273171.2010.483375
Zhang, M. X., Ku, L., Wu, A. M. S., Yu, S. M., & Pesigan, I. J. A. (2019). Effects of social and outcome expectancies on hazardous drinking among Chinese university students: The mediating role of drinking motivations. Substance Use & Misuse, 55(1), 156–166. https://doi.org/10.1080/10826084.2019.1658784
Zhang, M. X., Pesigan, I. J. A., Kahler, C. W., Yip, M. C. W., Yu, S., & Wu, A. M. S. (2019). Psychometric properties of a Chinese version of the Brief Young Adult Alcohol Consequences Questionnaire (B-YAACQ). Addictive Behaviors, 90, 389–394. https://doi.org/10.1016/j.addbeh.2018.11.045
Zhang, Z., & Wang, L. (2012). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154–184. https://doi.org/10.1007/s11336-012-9301-5
Zhang, Z., Wang, L., & Tong, X. (2015). Mediation analysis with missing data through multiple imputation and bootstrap. In Quantitative psychology research (pp. 341–355). Springer International Publishing. https://doi.org/10.1007/978-3-319-19977-1_24
Zyphur, M. J., Allison, P. D., Tay, L., Voelkle, M. C., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2019). From data to causes I: Building a general cross-lagged panel model (GCLM). Organizational Research Methods, 23(4), 651–687. https://doi.org/10.1177/1094428119847278
Zyphur, M. J., Voelkle, M. C., Tay, L., Allison, P. D., Preacher, K. J., Zhang, Z., Hamaker, E. L., Shamsollahi, A., Pierides, D. C., Koval, P., & Diener, E. (2019). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods, 23(4), 688–716. https://doi.org/10.1177/1094428119847280